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aPhysique Théorique et Mathématique and International Solvay Institutes,
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D7-branes which are holomorphically embedded and smeared along the transverse direc-

tions. After some general comments on the validity of the smearing procedure, we find the

full backreacted supergravity solution corresponding to a particular class of massive em-

beddings. The solution depends on a running effective number of flavors, whose functional

form follows from the smeared embedding. The running reflects the integrating in/out of

massive degrees of freedom in the dual field theory as the energy scale is changed. We

study how the dynamics of the theory depends on the flavor parameters, mainly focusing

on the static quark-antiquark potential. As expected, we find that the dynamical flavors

tend to screen the static color charges.
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1. Introduction

The construction of string duals of gauge theories with dynamical flavors is a task of obvious

interest. The gauge theories usually describe the low energy dynamics at the intersection of

Nc “color” and Nf “flavor” D-branes and evaluating the backreaction of the full system is
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not easy in general. If the flavor branes are on top of each other, the supergravity equations

of motion cannot be simply reduced to ordinary first order differential equations in a radial

variable. Instead, they are partial differential equations in a number of variables given by

the number of directions transverse to both the color and the flavor branes. For D3D7

models, this kind of scenarios have been studied in [1]. Other localized constructions were

discussed in [2].

To avoid this complication one can consider simplified set-ups where the flavor branes

are homogeneously smeared [3] in the transverse space. Whereas this restricts the possible

ways of introducing fundamental matter (one requires that the symmetries of the unflavored

theory should be effectively unbroken), it gives a useful framework to analyze physical

features of the resulting flavored theories. Moreover, the “smearing trick” is not only

computationally helpful. As we are going to argue in the following section, it is in a sense

a preferred choice if one wants to avoid singularities and large string couplings near the

position of localized sets of branes.

Following this prescription, the construction of string duals of flavored supersymmetric

theories in the Veneziano limit Nc, Nf ≫ 1 with Nf/Nc fixed, has been possible. In [4 – 6]

(resp. [7]) the string dual of a SQCD-like theory with massless (resp. massive) dynamical

flavors was found. The setup is determined by D5-branes wrapped on compact (for the

color branes) or non compact (for the flavor branes) two-cycles. The theory is the flavored

version of the confining Chamseddine-Volkov-Maldacena-Nunez (CVMN) solution [8]. In [9]

a large number of massless flavors was added to the conifold conformal theory of Klebanov

and Witten (KW) [10]. In [11] the construction was extended to the confining Klebanov-

Strassler [12] case. Other related setups and studies can be found in [13 – 16].

In this paper we focus on the flavored Klebanov-Witten model and extend the analysis

of [9] by considering the case where the dynamical flavors are massive and all with the same

constituent mass mq. Fundamental flavor multiplets are added to the theory by means of

D7-branes, which are wrapped on non-compact 4-cycles and holomorphically embedded in

the background in order to preserve the N = 1 supersymmetry [17]. The authors of [9]

found the supergravity solution generated by a “massless”, smeared D3D7 system. This

has a running dilaton and non trivial F1 (sourced by the D7-branes) and F5 RR fluxes.

The near horizon geometry has no AdS factor and this translates in a broken conformal

invariance in the dual field theory. The running dilaton blows up at a certain value of

the radial coordinate corresponding to a field theory UV Landau pole. Moreover, the

background has a curvature singularity when the dual gauge theory is in the far IR.

In the following sections we will show how with massive flavors one can find a IR

regular solution. Of course, the latter will not alter the UV behavior of the field theory

and the Landau pole will still be present. The flavor D7-branes are embedded in such a way

that they reach a minimal radial distance ρq from the bottom of the space. This distance

is related to the mass parameter mq, just as the field theory energy scale is related to the

radius ρ. Energies larger (smaller) than mq map to radii larger (smaller) than ρq. The

knowledge of the conifold geometry allows to find the density distribution of the smeared

flavor branes as a function of the radial coordinate.

With the density distribution explicitly calculated, we are able to solve the supergravity
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equations of motion coupled to the Nf D7-brane sources. The net result is interesting. As

it was anticipated in [9], the first order equations for the background fields following from

the supersymmetric fermionic variations retain the same form as those in the massless case,

modulo a substitution of Nf with a running effective number of flavors, Nf (ρ). The function

Nf (ρ) is related to the flavor density distribution mentioned above. This effective running

of the number of flavors has a nice field theory interpretation. As we go towards energy

scales much larger than the mass mq the theory resembles the massless one; at energies

lower than mq, the flavors can be integrated out and the theory looks like the unflavored

one. We will see that the function Nf (ρ), as well as the whole supergravity solution we will

deduce from it, precisely reproduces this field theory expectation. The function Nf (ρ) in

fact has the shape of a smoothed out Heaviside step functionNfΘ(ρ−ρq). In contexts where

extracting the function Nf (ρ) from the smeared massive embedding could be technically

difficult, it is useful to plug in the supergravity equations just the simple Heaviside function.

In this paper we will compare the results obtained by using the correct Nf (ρ) with those

deduced using the step approximation, finding that, in the flavored KW model at hand,

the latter works quite well, at least at small mq. This approximation was used to study

novel effects of massive dynamical flavors in the confining CVMN background in [7].

Once the full flavored KW background has been found, one can use it to study how the

strongly coupled dynamics of the dual gauge theory is affected by the dynamical flavors.

One of the expected effects is the screening of the color charge. In this paper we use

standard holographic techniques to extract the static potential between an external (i.e.

extremely massive) quark-antiquark pair Q̄,Q probing our flavored gauge theory. The

potential results to have a Coulomb-like shape and its behavior as a function of the sea

quark parameters Nf ,mq precisely accounts for the expected screening of the color charges.

We also study the behavior of the screening length as well as that of the minimal quark-

antiquark distance at which the Q̄Q bound state can decay into a pair of specific heavy-light

bound states Q̄q+ q̄Q (by popping out from the vacuum a dynamical quark-antiquark pair

q̄, q). Our analysis shows that the screening length is an increasing (resp. decreasing)

function of mq (resp. Nf ). The above mentioned minimal distance, which we call “string

breaking distance” Lsb, is instead a decreasing function of both Nf and mq.

The paper is organized as follows. We start in section 2 by reviewing the smearing

technique, pointing out which are its limits of validity and its relevance. In section 3 we

consider certain generalized massless and massive D7 embeddings on the conifold. Their

smearing is considered in section 4 where the expression for their radial distribution density

in a massive case is calculated. In section 5 we find the supergravity background dual to

the KW theory coupled to massive dynamical quarks and discuss the regimes where we can

trust the solution. In section 6 we rewrite the supergravity solution by using the Heaviside

step function approximation. We then study, in section 7, the dependence on the flavor

parameters of the static quark-antiquark potential and of the screening and string breaking

lengths, making a comparison between the results found using the “true” supergravity

solution and those following from the step function approximation. In appendix A we

review the orbifold origin of some D7 embeddings on the conifold. In appendix B we study

the dependence of the static quark-antiquark potential on a particular integration constant.

– 3 –
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2. Comments on the smearing technique

The technical trick we adopt to construct the string duals of gauge theories with a large

number of dynamical flavors, consists in considering the flavor branes as homogeneously

smeared along the transverse directions [3]. This trick allows one to find relatively simple

solutions having the largest possible degree of symmetry and taking into account the full

backreaction due to Nc “color” and Nf “flavor” D-branes. Moreover, as we are going to

argue, the trick is in a sense forced by the approximations used to find the full solution. In

fact, the starting point on the low energy string side is an action of the form [18]

S = SII +

Nf
∑

i=1

[SiBI + SiWZ ] , (2.1)

where the first term is the (IIB or IIA) bulk supergravity action and the remaining ones

are the Dirac-Born-Infeld and Wess-Zumino part of the flavor brane action, with the flavor

branes embedded in the background. One usually first solves for the embedding equations

and then for the remaining bulk equations on-shell.

Let us now consider Nf coincident flavor branes, such that the corresponding flavor

symmetry group is U(Nf ). In this case one expects corrections to the DBI action coming

from the fact that an open string can end on the Nf branes, so that the effective coupling

is gsNf . In the quenched approximation Nf ≪ Nc and the coupling is small, but if

Nf = O(Nc) the string theory would be strongly coupled. The DBI action was shown

to appropriately describe the gsNf -leading order dynamics of open strings in a generic

background [19]. Thus, if gsNf is order one, the corrections to the DBI can be large.

This fact has a precise analogue in field theory in the Veneziano limit [20]. At any given

order in Nc, the insertion of n quark loops (“windows”) is governed by the parameter

(g2
YMNf )

n and can be done perturbatively only for small g2
YMNf . If the latter is not small,

the sum over any number of windows must be performed non-perturbatively. In the brane

language, the “one window graph” corresponds to the DBI contribution, which is then a

good approximation only for small gsNf .

Crucially, in the smeared setup the effective coupling gsNf is further suppressed.1

Due to the smearing, the flavor symmetry U(Nf ) is generically broken to U(1)Nf and the

distance between two generic flavor branes is large (in string units) in the supergravity

approximation. Now, a typical string process will involve a space-time region of size of

order one in
√
α′ units: in such a region, thus, only a small fraction of the Nf smeared

flavor branes will be available for the process. If we denote as R the typical radius of an

internal dimension of the geometry in
√
α′ units, the number of flavor branes involved in a

typical process will be of order Nf/R
d, where d is the codimension of the flavor branes (the

number of dimensions involved in the smearing). Since in the supergravity approximation

R ≫ 1, the effective coupling to the flavor branes (gsNf )/R
d will typically be small even

if Nf = O(Nc). Thus, in cases as [4]–[7, 13, 15] where the supergravity regime can be

1We are grateful to Carlos Núñez for this crucial observation and for his relevant contributions to the

discussion presented in this section.
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attained with no restrictions on Nf/Nc, the use of the DBI action is still justified also for

gsNf of order one. For the case considered in this paper, nevertheless, we will show in

section 5.5 that the validity of the supergravity approximation implies Nf ≪ Nc and that

the validity of the DBI does not impose any further restriction.

A more detailed discussion of these issues will be presented in [21].

3. D7 embeddings on the conifold

The low energy dynamics of Nc D3-branes at the conifold singularity

z1z2 = z3z4 , (3.1)

where the zi are complex coordinates, is described by an N = 1 superconformal quiver

gauge theory with gauge group SU(Nc) × SU(Nc) and bifundamental matter fields A1, A2

and B1, B2 transforming respectively in the (Nc, N̄c) and in the (N̄c, Nc) representations

of the gauge group [10]. The matter fields form two SU(2) doublets and interact through

a quartic superpotential

WKW = ǫijǫkl[AiBkAjBl] . (3.2)

Here and in the following, traces over color indices are implied. In the Nc = 1 case it is

not difficult to show that the moduli space of the theory is in fact described by a conifold

singularity, with the following map between geometrical data and mesonic vevs

z1 = A1B1, z2 = A2B2, z3 = A1B2, z4 = A2B1 . (3.3)

The conifold is a 6d Calabi-Yau cone over the T 1,1 Sasaki-Einstein manifold. Its Ricci flat

metric is usually written as

ds2C = dr2 + r2ds2T 1,1 ,

ds2T 1,1 =
1

6

2
∑

i=1

[

dθ2
i + sin2 θidϕ

2
i

]

+
1

9

[

dψ +

2
∑

i=1

cos θidϕi

]2

, (3.4)

where the range of the angles is ψ ∈ [0, 4π), ϕi ∈ [0, 2π), θi ∈ [0, π]. In terms of these

coordinates we can write

z1 = r
3

2 e
i
2
(ψ−ϕ1−ϕ2) sin

θ1
2

sin
θ2
2
, z2 = r

3

2 e
i
2
(ψ+ϕ1+ϕ2) cos

θ1
2

cos
θ2
2
,

z3 = r
3

2 e
i
2
(ψ+ϕ1−ϕ2) cos

θ1
2

sin
θ2
2
, z4 = r

3

2 e
i
2
(ψ−ϕ1+ϕ2) sin

θ1
2

cos
θ2
2
. (3.5)

For our purposes of generalizing the background to an unquenched setup, it is more con-

venient to work with a redefined radial coordinate

r = r0e
ρ , (3.6)

where ρ is a dimensionless quantity and r0 is a constant which, in order to simplify notation,

we set to one from now on. The supergravity background sourced by the Nc D3 branes

has a metric of the known warped form

ds2 = h−1/2(ρ)[dxµdx
µ] + h1/2(ρ)[e2ρdρ2 + e2ρds2T 1,1] , (3.7)
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constant dilaton φ, and Nc units of F5 RR flux through T 1,1. In the decoupling limit, where

the geometry is dual to the Klebanov-Witten fixed point, the relevant metric is AdS5×T 1,1.

The D7-branes used to flavor the KW theory, are taken to be extended along the

Minkowski 4d directions and along a non compact four-dimensional submanifold in the

transverse space. This makes relatively easy the task of solving for the embedding equa-

tions. In fact the warp factor drops out in the D7 DBI action and the spacetime effectively

seen by the brane is a direct product of Minkowski spacetime and the conifold. This al-

lows to write the embedding equations in a relatively simple way in terms of the conifold

coordinates zi. A detailed study of the holomorphic D7 embeddings on the conifold can be

found in [22 – 25].

Two classes of embeddings, having z1 = µ and z1 − z2 = µ as representative elements,

were mainly considered in the literature. On the field theory side the two classes correspond

to the addition, to the KW superpotential, of extra cubic and quartic terms, respectively,

as well as of mass terms for the fundamental flavors when µ 6= 0. In the following we

will focus on the first class only. In appendix A we will briefly review the field theory

interpretation of both kind of embeddings, starting from an orbifold construction.

3.1 Massless embeddings

The simplest embedding we want to consider is z1 = 0. We call this embedding massless

since it is extended down to ρ = −∞. From (3.5) above, it obviously implies θ1 = 0 or

θ2 = 0. Thus, there are two branches. In each branch, the D7 brane fully wraps one

of the two two-spheres of T 1,1 and chooses a point in the other one. Notice that usually

choosing a point in a S2 requires two equations (fixing θ, ϕ), but of course if one is at a pole

(sin θ = 0), it is not necessary to specify ϕ. Thus we can describe a massless embedding of

this kind by choosing two points, one for each sphere, fixing the position of each branch.

From the field theory point of view the two branches correspond to two classes of flavor

multiplets, which we denote by q̃1, q1 and q̃2, q2. The addition to the Klebanov-Witten

theory of Nf D7-branes with z1 = 0 embedding, modifies the field theory superpotential

as [22]

Wz1=0 = WKW + h1q̃1A1q2 + h2q̃2B1q1 , (3.8)

where, here and in the following, sums over the Nf flavor indices are implied. The classical

flavor symmetry preserved by Wz1=0 is U(Nf ) × U(Nf ). Because of the SU(2) × SU(2)

symmetry, one should be able to pick a (two-branch) embedding by picking any point on

each of the spheres. This means that we should have a four-parameter family of massless

embeddings. This family is described by the more general embedding equation [22]

4
∑

i=1

αizi = 0 , (3.9)

with the complex constants αi spanning a conifold (up to overall complex rescalings)

α1α2 − α3α4 = 0 . (3.10)

– 6 –
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Notice that embeddings like z1 − z2 = 0 are not in this family.2 In (3.9), (3.10), we can

rescale the coefficients to fix3 α1 = 1. Then (3.10) fixes α2. Thus, this class of embeddings

is parameterized by two complex numbers α3, α4, as we expect in order to be able to choose

a point in each of the spheres for each branch. Indeed, the embedding equation

z1 + α3α4z2 + α3z3 + α4z4 = 0 , (3.11)

nicely factorizes into two branches

(

sin
θ1
2

+ α3e
iϕ1 cos

θ1
2

)(

sin
θ2
2

+ α4e
iϕ2 cos

θ2
2

)

= 0 , (3.12)

so, as expected, α3, α4 determine at which point each branch is sitting in each sphere:

θ1 = θ∞1 ≡ 2 arctan |α3| , ϕ1 = ϕ∞
1 ≡ π − arg[α3] ,

θ2 = θ∞2 ≡ 2 arctan |α4| , ϕ2 = ϕ∞
2 ≡ π − arg[α4] . (3.13)

The constants θ∞i , ϕ
∞
i denote the position of each branch as ρ → ∞ (a notation that will

be useful in the next section). We can rewrite (3.12) as

Γ1Γ2 = 0 , (3.14)

where we have defined

Γi ≡ cos
θ∞i
2

sin
θi
2
− ei(ϕi−ϕ∞

i ) sin
θ∞i
2

cos
θi
2
, (i = 1, 2) . (3.15)

For later reference, it is worth remarking that

0 ≤ |Γi| ≤ 1 . (3.16)

3.2 Massive embeddings

We now want to give a mass to the flavors. This deforms the embeddings in such a

way that the two branches of the massless embeddings merge (the U(Nf ) × U(Nf ) flavor

symmetry is explicitly broken down to U(Nf )). Let us again start with the simplest

embedding z1 = e
3

2
ρq eiβ , where ρq, β are real numbers. This is referred to as the unit

winding (n1 = n2 = 1) embedding in the notations of [24] and it is explicitly given by

ψ = ϕ1 + ϕ2 + 2β , e3ρ =
e3ρq

(

sin θ1
2

)2 (

sin θ2
2

)2 . (3.17)

Clearly, ρq is the minimal value of ρ reached by the brane. This is a connected embedding

which for large ρ goes to the two branches of the corresponding massless embedding.

2A SU(2)× SU(2) rotation, in fact, maps z1 − z2 = 0 into a generalized embedding equation as in (3.9),

with the parameters spanning a unit 3-sphere: α1 = −ᾱ2, α3 = ᾱ4, |α1|
2 + |α3|

2 = 1.
3Obviously this does not work for the α1 = 0 case, which implies that one of the branches is at the south

pole of one sphere. This is a zero measure subset of the embeddings considered.

– 7 –
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We now want to consider the same generalized class for the massive embeddings as we

used in section 3.1. The defining equation is [22]

z1 + α3α4z2 + α3z3 + α4z4 = const . (3.18)

In terms of the angles, we can write it as

e
3

2
ρe

i
2
(ψ−ϕ1−ϕ2)Γ1 Γ2 = e

3

2
ρq eiβ , (3.19)

with the same Γ’s defined in (3.15). Something obvious that is worth noting is that the

embedding equation is not independent on ψ any more, as expected because a mass term

breaks the U(1)R symmetry. Shifting ψ by a constant shifts the phase β. Consistently,

there is a 1
2 in front of ψ such that a 4π shift which takes us to the same point, shifts the

mass phase by 2π, thus leaving it invariant.

Thus, the embedding of a brane within this family depends on 6 real parameters: θ∞1 ,

ϕ∞
1 , θ∞2 , ϕ∞

2 , β, ρq. In the field theory, the first four should be identified with the couplings

in the superpotential while the last two should be related to the phase and the modulus of

the mass term.

The generalized embeddings we have found above, can be mapped to a field theory

superpotential of the form

W = WKW + h1q̃1[A1 + α4A2]q2 + h2q̃2[B1 + α3B2]q1 +m1q̃1q1 +m2q̃2q2 , (3.20)

where we put generic m1,m2 mass terms (then we will want m1 = m2). We can formally

rewrite W in a compact form as W = WKW + q̃Mq where M is the effective mass matrix

for the flavors. Following the arguments in [22], the equation detM = 0 should correspond

to the D7 embedding equation. Indeed, it reads

h1h2[A1 + α4A2][B1 + α3B2] = m1m2 , (3.21)

which is equivalent (using, for the Nc = 1 case, the maps (3.3)) to the equation

z1 + α3α4z2 + α3z3 + α4z4 =
m1m2

h1h2
. (3.22)

This is exactly of the form we proposed above, for the massless m1 = m2 = 0 (3.11) and

the massive (3.18) case.

4. Smearing the embeddings

We want now to consider Nf ≫ 1 branes suitably distributed within the family of em-

beddings (3.19). In particular, we want to restore effectively the SU(2) × SU(2) × U(1)

symmetry of T 1,1 which is broken by flavor branes on top of each other.

Accordingly, we want to place branes at different values of θ∞1 , ϕ
∞
1 , θ

∞
2 , ϕ

∞
2 , β, while,

in principle, we are interested in keeping ρq fixed (clearly, it is also possible to implement

a distribution of ρq’s). The symmetry preserving density of branes is

ρθ∞
1
ϕ∞

1
θ∞
2
ϕ∞

2
β ≡ dn

dθ∞1 dϕ
∞
1 dθ

∞
2 dϕ

∞
2 dβ

=
Nf

2π (4π)2
sin θ∞1 sin θ∞2 , (4.1)

– 8 –
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which is normalized as
∫ π

0
dθ∞1

∫ 2π

0
dϕ∞

1

∫ π

0
dθ∞2

∫ 2π

0
dϕ∞

2

∫ 2π

0
dβ ρθ∞

1
ϕ∞

1
θ∞
2
ϕ∞

2
β = Nf . (4.2)

The purpose of this section is to compute how the charge density produced by this D7-

brane distribution modifies the Bianchi identity for F1. This coupling comes from the WZ

term, which can be written as (cfr. eq (3.1) of [9])

SWZ = T7

∑

Nf

∫

M8

Ĉ8 → T7

∫

M10

Ω ∧ C8 , (4.3)

yielding:

dF1 = −T7(2κ
2
(10))Ω = −gsΩ . (4.4)

4.1 General procedure

Let us start by considering a generic distribution of D7-branes. The Ω defined above is

built from the orthogonal planes to the submanifolds where the branes are sitting. Each

brane is described by two equations

f1(pi;x
µ) = 0 , f2(pi;x

µ) = 0 , (4.5)

where the pi are some parameters and xµ are the spacetime coordinates (µ = 0, . . . , 9).

Locally, the orthogonal plane to a single embedding is described by a two-form:

δ(f1)δ(f2)df1 ∧ df2 . (4.6)

We now need to sum over all the branes. This becomes just an integral over the parameters

which define the embeddings, suitably weighted with the density:

Ω =

∫

ρpi
(pi) (δ(f1)δ(f2)df1 ∧ df2) dpi . (4.7)

4.1.1 A simple example

To see how the calculation is performed, let us work out the expression (4.7) for a case in

which we already know the answer: the smeared massless embedding in the KW case, as

discussed in [9]. There, since each embedding is disconnected into two branches, we have

to compute separately each contribution.

Consider the collection of branches described by

f1(θ
∞
1 , ϕ

∞
1 ;xµ) = θ1 − θ∞1 , f2(θ

∞
1 , ϕ

∞
1 ;xµ) = ϕ1 − ϕ∞

1 . (4.8)

The distribution density is

ρθ∞
1
ϕ∞

1
=
Nf

4π
sin θ∞1 . (4.9)

We plug this in (4.7) to get

Ω =

(
∫

Nf

4π
sin θ∞1 δ(θ1 − θ∞1 )δ(ϕ1 − ϕ∞

1 )dθ∞1 dϕ
∞
1

)

dθ1 ∧ dϕ1 =
Nf

4π
sin θ1dθ1 ∧ dϕ1 .

(4.10)

From the other branch, we get a similar contribution with (1 → 2), so Ω =
Nf

4π (sin θ1dθ1 ∧
dϕ1 + sin θ2dθ2 ∧ dϕ2). This, together with (4.4) above, agrees with equation (2.13) of [9].
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4.2 The Bianchi identity for the smeared massive case

We now want to compute the expression (4.7) where f1, f2 can be read from (3.19) and

the density is written in (4.1). Let us split the modulus and the phase in (3.19). From

equating the phases, we get

f1 = ψ − ϕ1 − ϕ2 + 2arg(Γ1) + 2 arg(Γ2) − 2β − 4πn , (4.11)

where n is any integer number.

From the modulus (squared) we find

f2 = e3ρ|Γ1|2|Γ2|2 − e3ρq , (4.12)

where

|Γi|2 =
1

2
[1 − cos θ∞i cos θi − sin θi sin θ

∞
i cos(ϕi − ϕ∞

i )] . (4.13)

We now have to insert these expressions, together with (4.1), into (4.7). Let us start by

making the integral in β. Since the only dependence from β in the integrand comes from

δ(f1), we have
∫

δ(f1)dβ = 1
2 (notice that f1 changes by 4π when β goes from 0 to 2π, so,

for any values of ψ, θi, ϕi, θ
∞
i , ϕ

∞
i , the argument of the delta function is zero exactly one

time in the β range of integration). Thus:

Ω =
Nf

(4π)3

∫

(sin θ∞1 sin θ∞2 δ(f2)df1 ∧ df2) dθ
∞
1 dϕ

∞
1 dθ

∞
2 dϕ

∞
2 . (4.14)

Notice that, because of (3.16), f2 can only vanish if ρ > ρq. Therefore, Ω(ρ < ρq) = 0, as

expected, since the flavor branes are extended in ρ > ρq only.

The integral (4.14) seems extremely difficult to compute. However, the result must

be fairly simple, just of the form displayed in (3.99) of [9] for a certain4 Nf (ρ) (a dot will

denote derivative with respect to ρ throughout the paper):

Ω =
Nf (ρ)

4π
(sin θ1dθ1 ∧ dϕ1 + sin θ2dθ2 ∧ dϕ2) −

Ṅf (ρ)

4π
dρ ∧ (dψ + cos θ1dϕ1 + cos θ2dϕ2) .

(4.15)

This is the only possibility for an exact two-form preserving SU(2) × SU(2) × U(1)ψ × Z2

(the Z2 interchanging the 1 and 2 S2’s). This observation will allow us to obtain an exact

simple expression for Ω since this task is just reduced to computing a single function Nf (ρ).

Let us expand Ω = 1
2ΩMNdx

M ∧ dxN , where the M,N are the coordinates

ρ, ψ, θ1, θ2, ϕ1, ϕ2. We can easily isolate the different terms of this expression and com-

pute them in turn. The simplest component is

Ωρψ = − Nf

(4π)3

∫

(

sin θ∞1 sin θ∞2 δ(f2)3e
3ρ|Γ1|2|Γ2|2

)

dθ∞1 dϕ
∞
1 dθ

∞
2 dϕ

∞
2 . (4.16)

Still, this is not so easy to compute due to the delta function. But, since Ωρψ cannot

depend on θi, ϕi (see (4.15)), we can fix θ1 = θ2 = 0 such that, from (4.13), we have

4Notice that Nf will denote the fixed number of flavor branes while Nf (ρ) is a non-trivial function,

representing the effective number of massless flavors at a given energy scale. These two quantities should

not be confused, they are only equal in the massless case, ρq = −∞.
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Figure 1: The function Nf (ρ) for three different values of the mass parameter (resp. from left to

right) ρq = −5 ,−4 ,−3.

|Γi|2 = 1
2 (1 − cos θ∞i ). Changing variables to ai = 1

2 (1 − cos θ∞i ) (notice that 0 ≤ ai ≤ 1),

the integral above now takes a simple form:

Ωρψ = −Nf

4π

∫

δ(e3ρa1a2 − e3ρq)3e3ρ a1 a2 da1 da2 = −3Nf

4π
e3ρq−3ρ

∫ 1

e3ρq−3ρ

da2

a2
. (4.17)

Comparing the result to (4.15) we get the sought result:

Ṅf (ρ) = 3Nfe
3ρq−3ρ(3ρ− 3ρq) ,

Nf (ρ) = Nf

[

1 − e3ρq−3ρ(1 + 3ρ− 3ρq)
]

, (ρ > ρq) (4.18)

whereas Nf (ρ) = 0 at ρ < ρq. Consistently, Nf (∞) = Nf and Nf (ρq) = 0, so Nf (ρ) is a

continuous function which asymptotes to the one of the massless case when ρ≫ ρq. Notice

also that Nf (ρ), Ṅf (ρ) ≥ 0 as required on intuitive grounds and also by the supergravity

equations of motion [9]. As it is shown in figure 1, Nf (ρ) has the shape of a smoothed-out

Heaviside step function.

This completes the computation of the Ω since the symmetry constrains the rest of

the components to be given by (4.15). We have checked the result (4.18) by calculating

explicitly, by numerical integration, the other components.

The effective running of the number of flavors has a natural field theory interpretation.

At energy scales larger than the mass of the matter multiplets, the theory looks like the

massless one. At energies lower than the mass scale, the massive flavors can be integrated

out and the theory resembles the unflavored (Nf = 0) one. At scales around ρ ∼ ρq, the

non-trivial profile of the function should take into account threshold effects.

5. The backreacted solution with massive flavors

Knowing the precise expression for Nf (ρ), we can find the backreacted solution dual to

the massive flavored KW theory using the expressions of [9]. The ansatz for the Einstein

frame metric

ds2 = h−
1

2dx2
1,3 + h

1

2

(

e2fdρ2 +
e2g

6

∑

i=1,2

(dθi + sin2 θidϕ
2
i ) +

e2f

9

(

dψ +
∑

i=1,2

cos θidϕi

)2)

,

(5.1)
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is a deformation, driven by the functions f(ρ), g(ρ), of the warped conifold considered up

to now (for which f(ρ) = g(ρ) = ρ). The radial coordinate ρ varies in (−∞, ρL] with the

lower (resp. upper) extremum being mapped, via the holographic radius/energy relation,

to the extreme IR (resp. UV Landau pole) of the dual field theory. The ansatz for the

RR-forms and the dilaton reads (we set gs = 1 in the following)

φ = φ(ρ) ,

F5 = 27πNcα
′2e−4g−f h(ρ)−5/4

(

ex
0x1x2x3ρ − eθ1ϕ1θ2ϕ2ψ

)

,

F1 =
Nf (ρ)

4π

(

dψ + cos θ1 dϕ1 + cos θ2 dϕ2

)

,

dF1 = −Nf (ρ)

4π
(sin θ1 dθ1 ∧ dϕ1 + sin θ2 dθ2 ∧ dϕ2

)

+

+
Ṅf (ρ)

4π
dρ ∧ (dψ + cos θ1dϕ1 + cos θ2dϕ2) . (5.2)

The vielbein is given by

ex
i

= h−1/4 dxi, eρ = h1/4efdρ ,

eθi =
1√
6
h1/4egdθi, eϕi =

1√
6
h1/4eg sin θidϕi ,

eψ =
1

3
h1/4ef (dψ + cos θ1 dϕ1 + cos θ2 dϕ2) . (5.3)

It is crucial to notice that the projections that define the Killing spinors have the same

form for the deformed or undeformed ansatze [9]. Then, it is not difficult to check that the

κ-symmetry analysis of [24] is easily generalized to the backreacted solution, and (3.17)

is obtained without modification (when one uses the ρ-coordinate). This means that the

computation of section 4 and in particular the result (4.18) is directly applicable to the

backreacted case.

The other crucial observation is that passing from Nf to Nf (ρ) does not alter the form

of the first order equations for the functions appearing in the ansatz. This is due to the

fact that the supersymmetric fermionic variations only contain the forms F and not the dF

terms. Thus, although the Bianchi identity for F1 is modified in this massive setup w.r.t.

the massless one, we can just use the first order equations found in [9] with Nf → Nf (ρ).

We thus have:

ġ = e2f−2g ,

ḟ = 3 − 2e2f−2g − 3Nf (ρ)

8π
eφ ,

φ̇ =
3Nf (ρ)

4π
eφ ,

ḣ = −27πNcα
′2 e−4g . (5.4)

These equations have to be solved separately for ρ < ρq and ρ > ρq. Then, one has to

demand continuity at ρ = ρq. This will be the content of the upcoming subsections.
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The constituent mass mq for the dynamical quarks can be related to ρq by defining it,

as usual, as the energy of a straight string stretched along the radial direction from ρq to

the bottom of the space, that is at ρ = −∞ in our case:

mq =
1

2πα′

∫ ρq

−∞

e
φ
2
+fdρ . (5.5)

5.1 Region 1: ρ < ρq

In this region, one just has the well known unflavored system, after inserting Nf (ρ) = 0

in (5.4). The general solution for φ, g, f can be given in a simple form:

eφ = eφIR ,

eg = c̃3
(

e6ρ + c̃1
)

1

6 ,

ef = c̃3e
3ρ
(

e6ρ + c̃1
)− 1

3 ,

h(ρ) = 27πNcα
′2

(

c̃2 +

∫ ρq

ρ
e−4g(ρ∗)dρ∗

)

. (5.6)

For the integration constants, we have used a notation similar to [9].

5.2 Region 2: ρ > ρq

The relevant system of equations for this region comes from inserting Nf (ρ) as given

in (4.18) in (5.4). Remarkably, it turns out that the functions f, g, φ can be explicitly

integrated in this region too. Just as in the massless case, the dilaton is running and

blows up at a certain ρL. Fixing one of the constants of integration, which just amounts

to shifting ρ, ρq, we require, as in [9], that the dilaton divergence (i.e. the field theory UV

Landau pole) is located at ρL = 0. The solution is:

eφ = − 4π

Nf (3ρ− e3ρq−3ρ(3ρq − 3ρ− 2) + e3ρq(3ρq − 2))
,

ef = c3

(

−6e6ρρ+ 2e3ρ+3ρq (3ρq − 3ρ− 2) − 2e6ρ+3ρq (3ρq − 2)
)

1

2

(e6ρ(1 − 6ρ) + 4e3ρ+3ρq (3ρq − 3ρ− 1) − 2e6ρ+3ρq (3ρq − 2) + c1)
1

3

,

eg = c3
(

e6ρ(1 − 6ρ) + 4e3ρ+3ρq (3ρq − 3ρ− 1) − 2e6ρ+3ρq (3ρq − 2) + c1
)

1

6 ,

h(ρ) = 27πNcα
′2

(

c2 +

∫ 0

ρ
e−4g(ρ∗)dρ∗

)

. (5.7)

5.3 Patching the solutions at ρ = ρq

Out of the seven integration constants appearing in (5.6), (5.7), four are fixed by demanding
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continuity of the functions at ρ = ρq, namely:

eφIR =
4π

Nf (e3ρq(2 − 3ρq) − (2 + 3ρq))
,

c1 = −e6ρq + c̃1
(

2 e3ρq (2 − 3ρq) − 2(2 + 3ρq)
)

,

c̃3 = c3
(

2 e3ρq(2 − 3ρq) − 2(2 + 3ρq)
)

1

6 ,

c̃2 = c2 +

∫ 0

ρq

e−4g(ρ∗)dρ∗ . (5.8)

Notice that the infrared dilaton blows up, signaling the breaking of the validity of the

supergravity approximation, for ρq → 0, i.e. for dynamical masses close to the Landau

pole.

5.4 A prescription for the integration constants

Apart from depending on the parameters Nc, Nf , ρq, which have a clear field theory inter-

pretation (ρq being related to the modulus of the quark masses), the solution described

above also contains three independent integration constants c̃1, c2, c3. In this subsection

we will discuss their physical meaning and give a prescription to fix them when comparing

different solutions, as we will do in section 7.

Let us start with c̃1, which severely affects the IR behaviors. If c̃1 = 0 one recovers

in the IR limit the standard regular solution for D3-branes on the conifold. If c̃1 > 0 the

solution is of the form discussed in [26]: in this case the transverse space to the D3-branes

is a deformation of the (Z2 orbifold of the) conifold where a 4-cycle has blown up. The

D3’s are actually smeared along that cycle and their backreaction gives rise to a singular

10d background. Here, we will not be interested in such solutions and thus, by demanding

IR regularity, we impose

c̃1 = 0 , (5.9)

which, from (5.8), sets

c1 = −e6ρq . (5.10)

The constant c2 affects mainly the UV and corresponds to turning on a source term for

an irrelevant operator. We will require our solutions to share a common UV behavior by

setting

c2 = 0 , (5.11)

such that h precisely vanishes at the Landau pole. We then have φ|ρ=0 = ∞, h|ρ=0 =

ef |ρ=0 = 0.

Finally, c3, which simultaneously rescales e2g, e2f , h−
1

2 , can be reabsorbed by a rescaling

of the Minkowski coordinates. We will adopt an ad hoc prescription and, as before, require

that all solutions behave similarly in the UV by demanding eg|ρ=0 = 1. This fixes:

c3 = (1 − e6ρq + 6ρqe
3ρq )−

1

6 . (5.12)
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Figure 2: The curvature scalar as a function of ρ for, from left to right,

ρq = −20,−15,−10,−5,−3.

Inserting this value in (5.8) we obtain:

c̃3 =

(

2 e3ρq (2 − 3ρq) − 2(2 + 3ρq)

1 − e6ρq + 6ρqe3ρq

)

1

6

. (5.13)

Let us close this section by inserting these prescriptions in the definition of the constituent

quark mass (5.5):

mq =
1

2πα′

√

8π

Nf

eρq

(1 − e6ρq + 6ρqe3ρq )
1

6 (2 e3ρq(2 − 3ρq) − 2(2 + 3ρq))
1

3

. (5.14)

Notice that limρq→0mq = ∞. Of course we cannot trust the supergravity formulas in

this limit since the dilaton is blowing up. The best we can say is that these results suggest

that, within the choice of integration constants adopted above, we can explore a wide range

of dynamical mass parameters, from mq → 0 to some higher mq < ΛUV.

5.5 The Ricci curvature and regime of validity

The validity of the supergravity approximation that we are using, requires the curvature

invariants of the string frame version of (5.1) to be small in α′ units. Let us focus, in

particular, on the Ricci scalar. Using the BPS equations (5.4), one obtains

RS = −2
3Nf (ρ)

4π
h−

1

2 e−2g+ φ
2

(

7 + 4
3Nf (ρ)

4π
e2g−2f+φ +

7

4
e2g−2f Ṅf (ρ)

Nf (ρ)

)

. (5.15)

Obviously, it vanishes in region 1 (ρ < ρq) where the near-horizon (ρ → −∞) metric is

AdS5 × T 1,1 and the dilaton is constant. Validity of supergravity in region 1 requires

λIR = Nce
φIR to be large and eφIR to be small, as usual. From (5.8) we see that these

conditions are satisfied, at fixed ρq, if Nc ≫ Nf ≫ 1.

Let us now concentrate on region 2. Since eφ ∼ N−1
f and h ∼ Ncα

′2, it is easy to see

that one can write RS as
√

Nf/Nc α
′−1 times a factor which only depends on ρ, ρq (once

the integration constants c1, c2 have been fixed, notice that RS does not depend on c3).

Figure 2 depicts some examples, where the prescription of section 5.4 for c1, c2 has been

used.
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In region 2, in order for the supergravity approximation to be valid in a large range of

ρ, we need Nf ≪ Nc so that the Ricci scalar stays parametrically small except, eventually,

very near the Landau pole.5 Notice also that the only singularity of the solution is located

at the Landau pole (a pathological behavior expected on physical grounds). As stressed in

the introduction, the smearing of massive flavors allows to smooth out IR singularities.

Apart from checking the validity of the supergravity approximation which requires

Nc ≫ Nf ≫ 1, we should also check the validity of the smeared approximation and the

DBI action, along the lines of section 2. The branes we are smearing have codimension

d = 2 and, as we have seen, the typical length of the transverse space is governed by

R ∼ (Nc/Nf )
1

4 . Within an area of α′ size there are Nf/R
2 ≈ N

3

2

f N
− 1

2
c flavor branes, a

number which should be larger than 1 for the smearing to be a good approximation down

to α′ scales. On the other hand, for the DBI to be valid, eφN
3

2

f N
− 1

2
c ≪ 1. Since eφ ∼ N−1

f ,

it is clear that this condition does not impose any further restriction. We thus get the

following range of parameters:

1 ≪ N
1

3
c ≪ Nf ≪ Nc . (5.16)

Similar restrictions on the parameters should be considered also in the the massless case

ρq = −∞. It should be interesting to investigate if there are regions of ρ for which our

solution can be valid for more general values of Nf/Nc and to check how the curvature -

and, so, the validity range of the supergravity approximation - is affected by the choice of

the integration constants.

5.6 Further comments on the dual field theory

As we have remarked above, the string background we have constructed is dual to a flavored

Klebanov-Witten theory which has gauge group SU(Nc) × SU(Nc), a Landau pole in the

UV and is conformal in the IR. This is reflected by the behavior of the dilaton eφ, which,

provided the standard orbifold dictionary can be applied to the present setup, is mapped

to the field theory gauge couplings by

4π

g2
1

+
4π

g2
2

= e−φ . (5.17)

Without loss of generality here we consider the case g2
1 = g2

2 ≡ g2
FT = 8πeφ. The dilaton

is running and going to infinity for ρ → 0, while it is constant in the region ρ < ρq. The

beta function for gFT can be inferred, holographically, from the dilaton equation

d

dρ
e−φ = −3Nf (ρ)

4π
, (5.18)

once the precise radius/energy relation is given. In the massless case, the relation ρ =

log (µ/ΛUV) was used to get the field theory beta function [9]. In our case this relation

5This restriction is typical in D3D7 systems [1]. Notice that, despite the limit Nf ≪ Nc, we are not in

the quenched approximation, since the backreaction of the flavor branes is taken into account.
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should still be valid with a good approximation when the flavors are very light. Notice

that this relation suggests that

ρq = log
mq

ΛUV
, (5.19)

which, looking at eq. (5.14), is just the leading term in the small mass limit where ρq → −∞.

Within these approximations, we can write the field theory running coupling as

8π

g2
FT

≈ −Nf

4π

[

3 log
µ

ΛUV
−
(

mq

µ

)3 [

3 log
mq

µ
− 2

]

+

(

mq

ΛUV

)3 [

3 log
mq

ΛUV
− 2

]

]

. (5.20)

In this expression, the first term reproduces the one-loop result, while the rest is a string

prediction.6 The power-like factors in the above expression could be interpreted in field

theory as fractional instantons, or renormalon corrections; the interesting feature is the

presence of just two such terms.

6. The Heaviside approximation

A simple way to model the integrating in/out of the massive flavor degrees of freedom

in field theory is to forget about the details of the embedding and model the string dual

with a Heaviside step function Nf (ρ) = NfΘ(ρ − ρq). Of course this approximation is

a source of systematic errors, due to the differences between the step function and the

true value of Nf (ρ) extracted from the smearing procedure. In the present setup we can

measure these errors, comparing (see the following sections) physical observables deduced

using both the true and the approximate supergravity solutions. Estimating these errors

is of notable importance to have an idea of how well the step function approximation can

work in general models like [7], where the correct Nf (ρ) may be hard to compute.

We now present the solution using the Heaviside form for Nf (ρ), using capital symbols

for integration constants within this framework. At ρ < ρq, we still have (5.6), whereas for

ρ > ρq the solution reads:

eφ = − 4π

3Nfρ
,

eg = C3

(

(1 − 6ρ)e6ρ + C1

)
1

6 ,

ef = C3

√

−6ρ e3ρ
(

(1 − 6ρ)e6ρ + C1

)− 1

3 ,

h = 27πNcα
′2

(

C2 +

∫ 0

ρ
e−4g(ρ∗)dρ∗

)

. (6.1)

As in section 5.3, continuity at ρq gives some relations among the different constants:

eφIR = − 4π

3Nfρq
, C1 = −6ρqC̃1 − e6ρq , C̃3 = C3(−6ρq)

1

6 , (6.2)

6One has to keep in mind that the string theory calculation of Nf (ρ) is reflecting a particular choice of

renormalization scheme in the field theory side.
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while if we follow again the prescriptions of section 5.4, we get:

C̃1 = C2 = 0 , C3 = (1 − e6ρq)−
1

6 . (6.3)

Under this prescription, the constituent quark mass (5.5) reads:

mq =
1

2πα′

√

8π

Nf

eρq

(−6ρq)
1

3 (1 − e6ρq)
1

6

. (6.4)

Notice that for ρq → −∞ the solutions obtained with the actual Nf (ρ) approach those

written above: this suggests that the Heaviside approximation is quite good in the small

mq limit.

7. Wilson loops in backreacted D3D7 models

In the previous sections we have constructed a string dual of a flavored version of the

Klebanov-Witten theory with a large number Nf of dynamical flavors of mass mq. Now

we want to study how these sea flavors affect the non perturbative dynamics of the gauge

theory. We are going to probe the latter with an external quark-antiquark Q̄,Q pair with

mass MQ ≫ mq. Due to the presence of a Landau pole in the gauge theory, MQ cannot

be taken to be infinite and it must lie below the pole. The idea is to study how the static

quark-antiquark potential depends on the sea quark parameters mq, Nf . The effects of Nf

flavors on the energy/spin relations for mesonic-like bound states in a similar but localized

D3D7 system have been studied in [27].

The Q̄Q bound state is dual to an open string with the extrema lying on a probe

D7-brane embedded in such a way that it reaches a minimal distance ρQ ≫ ρq from the

bottom of the space (MQ = 1
2πα′

∫ ρQ

−∞
e

φ
2
+fdρ). The string, in turn, bends in the bulk

and reaches a minimal radial position ρ0. The Minkowski separation L between the test

quarks, as well as the total energy of the system, depends on ρ0. From this we can deduce

the V (L) relation, where V (L) is the Q̄Q potential, i.e. the total energy to which the total

contribution from the quark mass 2MQ has been subtracted. The open string embedding

is chosen as t = τ, y = σ, ρ = ρ(y) where y ∈ [−L/2, L/2] is one of the spatial Minkowski

directions. The string worldsheet action reads

S = − 1

2πα′

∫

dtdy
√

gtt(ρ)[gyy(ρ) + (∂yρ)2gρρ(ρ)] ,

where gµν refers here to the string frame metric, which is obtained multiplying (5.1) by e
φ
2 .

Defining

F =
√
gttgyy = e

φ
2 h−1/2 , G =

√
gttgρρ = e

φ
2 ef , (7.1)

we can write [28, 29] the string length and renormalized energy as (the 0 subindex means

that the quantity is evaluated at ρ = ρ0)

L(ρ0) = 2

∫ ρQ

ρ0

GF0

F
√

F 2 − F 2
0

dρ ,

V (ρ0) =
2

2πα′

[
∫ ρQ

ρ0

GF
√

F 2 − F 2
0

dρ−
∫ ρQ

0
G dρ

]

.
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Figure 3: From left to right, plots of V (L) at different values of: Nf = 1, 0.6, 0.2, top to bottom

(at mq = 0.1, MQ = 3); mq = 0.5, 1, 1.5, top to bottom (at Nf = 1, MQ = 2.5); MQ = 0.6, 1.2, 3,

top to bottom (at Nf = 1, mq = 0.1). Note that V (0) = −2MQ, so the potential is always bounded

from below.

We can use the background solutions found in the previous sections to study how the

external quark interaction depends on the dynamical massive flavors. In doing so, we

vary one of the physical parameters Nf ,mq,MQ while keeping the other two fixed. In the

numerical computations we will present, lengths will be measured in units of
√

27πNcα′2

whereas energies in units of (2πα′)−1 (the r0 that was set to 1 in (3.6) should be reinserted

to get the correct dimensions).

From figure 3 we can see that the static quark-antiquark potential is always negative

and has the same qualitative Coulomb-like behavior as in the unflavored KW conformal

case. This behavior is not unexpected: in the far IR (i.e. at large L) the quarks are

integrated out and the theory looks like the KW one. Hence at large L we expect the

Coulomb-like behavior typical of a conformal theory. Figure 3 also tell us that the absolute

value of the potential |V (L)| at fixed L is a decreasing function of Nf and an increasing

function of mq. This is an effect of the screening of the color charges due to the dynamical

flavors: the more the theory is “unquenched” (large Nf , small mq) the more the modulus of

the quark-antiquark force is reduced. Finally, the large L behavior of V (L) is not strongly

affected by the choice of the cutoff MQ; in the small L region, instead, we see that |V (L)|
is an increasing function of MQ. We will see in section 7.4 how these results nicely fit with

the expected qualitative behavior of V (L).

For all the plots of this section, we have adopted the prescription for integration con-

stants given in section 5.4. It can also be instructive to study how the behavior of the Q̄Q

interaction is affected by the choice of these integration constants. A brief analysis of the

dependence on c2 can be found in appendix B.

7.1 The screening length

The connected Q̄Q configuration we have studied above is expected to be unstable due

to the presence of the dynamical flavors. If the Q̄Q string has enough energy, in fact, a

dynamical q̄q pair can be popped out from the vacuum with a consequent decay of the

heavy Q̄Q state into a pair of heavy-light mesonic-like bound states Q̄q + q̄Q. The length

at which the decay can happen is the so called “screening length” Ls. In the model at

hand, due to the smearing procedure, the lighter heavy-light “mesons” are nearly massless.
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Figure 4: From left to right, the screening length Ls as a function of: Nf for mq = 0.01, 0.05, 0.1,

bottom to top (MQ = 2); mq for Nf = 1, 1.5, 2, top to bottom (MQ = 2); MQ for Nf = 1,mq = 0.1

(thick), Nf = 1,mq = 0.101 (dashed), Nf = 1.01,mq = 0.1 (solid).

This is due to the fact that there exist dynamical flavor branes which intersect the probe

brane corresponding to the test quarks. The open string stretching between the probe and

those dynamical branes has nearly massless modes at the intersection. In fact their mass

is expected [30] to scale as MQ/
√
λ (where λ denotes the bare ’t Hooft coupling), which

is parametrically smaller than MQ since λ ≫ 1 in the supergravity regime. The decay

into a pair of mesons of this kind can happen when the energy of the static configuration,

2MQ + V (L), equals their total mass, 2MQ/
√
λ. Hence

V (Ls) = −2MQ

(

1 − 1√
λ

)

. (7.2)

Due to the presence of the Landau pole, MQ cannot be as large as we want and it can

be interesting to study how Ls varies with the flavor parameters. Relevant plots (with√
λ = 50) can be found in figure 4. As expected, the screening length decreases as Nf

increases and it is an increasing function of mq. From the Coulomb-like behavior of V (L)

we expect, moreover, that Ls is decreasing with MQ. The fact that the potential also

depends on the cutoff MQ (at fixed L, |V (L)| is an increasing function of MQ as we have

seen) does not alter this behavior, as it is evident in the figure.

A recent proposal for improving the quenched approximation in QCD so to take into

account the screening effects of dynamical flavors can be found in [31].

7.2 The string breaking length

It is important to notice that due to the smearing, the decay of the static configuration

into a given pair of heavy-light bound states is suppressed by 1/Nc and not by Nf/Nc as

it would happen in a setup with localized parallel flavor branes. A decay rate which is

only Nf/Nc suppressed can be obtained by considering the possibility of decaying into an

arbitrary sizable fraction of the Nf types of heavy-light bound states. We call the minimal

Q̄Q separation at which this kind of decay can happen, the “string-breaking length” Lsb.

We choose to define Lsb as the length at which a dynamical quark-antiquark pair with

the same internal charges as the test quarks can be popped out from the vacuum. The

corresponding produced heavy-light bound states have a mass given by MQ−mq and thus

a large binding energy Eb = −2mq independent on the ’t Hooft coupling. The open string

describing these “mesons” is just stretched along the radial direction of the geometry (5.1)

between the probe brane at ρQ and a parallel dynamical flavor brane at ρq [32]. Since the

– 20 –



J
H
E
P
0
9
(
2
0
0
8
)
0
4
8

0 1 2
N f

10

25

40
Lsb

0.05 0.1 0.15
mq

10

25

40

Lsb

1.5 2 2.5
MQ

4.79

4.80

4.81

4.82
Lsb

Figure 5: From left to right, the string breaking length Lsb as a function of: Nf , for mq =

0.03, 0.05, 0.1, top to bottom (MQ = 2); mq, for Nf = 0.5, 1, 2, top to bottom (MQ = 2); MQ for

Nf = 1,mq = 0.1 (thick), Nf = 1.01,mq = 0.1 (solid), Nf = 1,mq = 0.101 (dashed).
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Figure 6: The potential V (L) in the step approximation (dashed lines) and with the correct Nf (ρ)

function (solid lines), for MQ = 2.5, Nf = 1 and mq = 0.3, 1.5 (top to bottom).

interactions between the two produced “mesons” is negligible, it follows from our definition

that Lsb is just the solution of

V (Lsb) + 2MQ = 2(MQ −mq) ⇒ V (Lsb) = −2mq . (7.3)

Figure 5 shows that Lsb is a decreasing function of both Nf and mq. The latter behavior

is due to the shift in the meson mass as we vary mq. Lsb is an increasing function of MQ

which tends to flatten at large MQ.

7.3 Comparison with the Heaviside approximation

It is instructive to compare the behavior of the Wilson loop observables as obtained using

the correct string dual solution with Nf (ρ) given in (4.18), with those obtained using the

Heaviside step function approximation. In figure 6 we compare the plots for V (L) at

different values of the parameters. The figure confirms that the step approximation, in the

flavored KW model, works quite well when mq is small, or, better said, when MQ −mq is

large. Moreover, it is possible to show that the approximation is even better if the step is

placed where the function Nf (ρ) has reached half of its value Nf (ρstep) = Nf/2.

7.4 Comparison with field theory expectations

The behavior of the potential V (L) as well as that of the critical lengths Ls and Lsb, as a
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Figure 7: Fits of the numerical data (dots) with an analytic formula like (7.7); on the left,

mq = 0.01,MQ = 2; on the right, Nf = 1,MQ = 2.

function of the flavor parameters, fits very well with a simple analytical result suggested

by field theory and AdS/CFT arguments.

We know that in the low energy regime, when the massive flavors are integrated out,

our model has vanishing beta function. In the string dual description this is reflected into

the constancy of the dilaton φ = φIR in the ρ < ρq region. The addition of flavors gives

a negative beta function, whose one loop coefficient behaves as bUV = −3
4Nf . In the

perturbative regime mq ≪ ΛUV (where ΛUV indicates the position of the Landau pole), we

can match the UV and IR couplings at the scale mq so to get the IR value of the coupling

8π2

g2
IR

=
3

4
Nf log

ΛUV

mq
. (7.4)

This expression is nothing but the field theory rewriting of the stringy result we have found

for the dilaton in the step function approximation, eφIR,st = −4π/(3Nfρq). Indeed, when

ρq → −∞ we can safely identify ρq ≈ log(mq/ΛUV). Now, remembering the expression

for the Q̄Q potential of a conformal theory with an AdS dual [28], we expect that for our

model, in the strong coupling regime

VQ̄Q(L) ≈ −

√

g2
IRNc

L
≈ −

√
Nc

√

Nf log ΛUV

mq

1

L
, (7.5)

in the large L limit. From this expression we can deduce, in the same limits, the screening

length Ls

Ls ≈
√
Nc

MQ

√

Nf log ΛUV

mq

, (7.6)

and the string breaking length Lsb

Lsb ≈
√
Nc

mq

√

Nf log ΛUV

mq

. (7.7)

The above analytical functions share with our numerical results the same qualitative be-

havior with the flavor parameters. The expression for the screening length is not expected
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to fit well with our data, since the approximation we used to get eq. (7.6) requires L to

be large. Instead, in figure 7 we have fitted our numerical data with a formula for Lsb as

in eq. (7.7) - treating ΛUV and an overall constant as parameters - finding a very good

agreement.
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A. D7 embeddings from the orbifold

There are two main classes of holomorphic embeddings for D7 branes on the conifold:

class I has z1 = µ [22] as representative embedding equation, while class II is represented

by z1 − z2 = µ [23]. The two classes are argued to correspond to two different ways of

adding flavors to the KW model. Let us focus here on the massless µ = 0 case. Class I

embeddings have two branches of D7 branes, each branch adding fundamental matter to

the first node of the KW quiver and antifundamental matter to the second. In the class

II case a D7-brane provides fundamental and antifundamental matter to one node. Since

the KW theory can be obtained starting from the N = 2 conformal theory describing Nc

D3-branes on the C
2/Z2 orbifold singularity [10] it could be useful to classify the possible

kinds of D7 embeddings starting from the orbifold picture. This could also help in finding

the correct superpotential terms corresponding to the chosen embeddings. A discussion on

these issues can be found in [22].

The orbifold theory is a quiver with gauge group SU(Nc) × SU(Nc) and, in terms of

N = 1 components, the same bifundamental multiplets Ai, Bi as the KW theory, plus two

adjoint supermultiplets Φ1 and Φ2, one for each of the gauge groups. The superpotential

of the theory schematically reads

Worb = Φ1(A1B1 −A2B2) − Φ2(B1A1 −B2A2) . (A.1)
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There are mainly two ways of adding massless flavors to both nodes of the quiver: either we

add to the above superpotential cubic terms coupling the new flavors to the bifundamentals,

i.e. (modulo SU(2) × SU(2) rotations)

WorbI = Worb + q̃1(A1 −A2)q2 + q̃2(B2 −B1)q1 , (A.2)

or we couple the new flavors with the adjoint supermultiplets

WorbII = Worb + q̃1Φ1q1 − q̃2Φ2q2 . (A.3)

These two possibilities have been considered in the T-dual Type IIA picture [33, 34] to which

we refer for the sign conventions. The superpotential in (A.2) reduces supersymmetry by

one half, while that in (A.3) does not break the N = 2 supersymmetry (the corresponding

string model is just an orbifold of the D3D7 system in flat space). In case I each branch

of D7 branes extends only along two directions inside the orbifold. In case II, the D7-

branes are taken to be extended along the 4 orbifolded directions. It is easy, in this case,

to see that the flavored theory has a Landau pole: the one loop coefficient of the beta

function (which does not get perturbative corrections beyond one-loop due to the N = 2

supersymmetry) for each group is equal to b = 3Nc − Nc − 2Nc − Nf = −Nf (where the

negative terms −Nc,−2Nc,−Nf are the contributions of the adjoint, bifundamental and

fundamental matter superfields, respectively) and on each node the theory is thus IR free.

Let us now go to the N = 1 conifold theory by adding to the above superpotentials

the appropriate mass term for the adjoints

Wm =
mΦ

2
(Φ2

1 − Φ2
2) . (A.4)

Integrating out the adjoint fields in case I, will produce a superpotential of the form

WI = WKW + h1 q̃1(A1 −A2)q2 + h2 q̃2(B2 −B1)q1 , (A.5)

while in case II one will get

WII = WKW+ĥ1 q̃1[A1B1−A2B2]q1+ĥ2 q̃2[B1A1−B2A2]q2+k1 (q̃1q1)
2+k2 (q̃2q2)

2 . (A.6)

Writing the effective mass terms for the flavors in a compact matrix form q̃Mq, the equation

detM = 0 gives, for the case I, A1B1 +A2B2 −A1B2 −A2B1 = 0, i.e. z1 + z2 − z3 − z4 = 0.

This is nothing but one of the possible rotations of the z1 = 0 embedding: in fact it

is our generalized embedding (3.11) with α3 = α4 = −1. In case II, detM = 0 gives

A1B1 −A2B2 = 0, i.e. the z1 − z2 = 0 embedding equation.

The massive generalizations of the embeddings above correspond to the addition of

standard mass terms m1q̃1q1 +m2q̃2q2 to the massless superpotential. In case I the mass

terms break the classical flavor symmetry group to U(Nf ), while in case II, the U(Nf ) ×
U(Nf ) symmetry is preserved.

It is also tempting to write the class I D7 embeddings using the orbifold coordinates.

The C
2/Z2 orbifold is described by the xy = z2 equation in C

3. The massless embeddings

of class I, should thus be described by an equation like z = 0, giving rise to the two branches

x = 0 and y = 0 corresponding to D7 branes extended only over one half of the orbifold

directions.
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Figure 8: Plots of V (L) with c2 = 10, mq = 0.2, Nf = 1, MQ = 2.5. The dashed (resp. solid)

line refers to the result obtained using the Heaviside approximation (resp. the correct solution with

Nf (ρ)).

B. Dependence on the integration constants

In section 5 we have constructed the background solution obtained with a precise pre-

scription for the integration constants c̃1, c2, c3. We would like to briefly discuss here what

would happen with a different choice of constants. As explained in section 5.4, c̃1 6= 0 would

produce a singularity in the IR which we want to avoid. On the other hand, varying c3
just produces a rescaling of ef , eg, h and, for the static quark-antiquark system, a rescaling

of L and V which does not change the qualitative form of the V (L) curves. Finally, c2 < 0

would make the geometry singular at some point below the Landau pole, a behavior that

we also want to avoid. Let us thus focus on modifying our original prescription c2 = 0 to

c2 > 0. The behavior of the V (L) static potential is crucially affected by the value of c2, as

shown in figure 8. For every c2 > 0 the large L (ρ0 → −∞) regime of V (L) is unchanged:

the potential approaches zero from below since the theory is IR conformal. However, above

a certain critical value of c2 (which depends on the other physical parameters), one ob-

serves a double turnaround of the V (L) graph at shorter distances: the potential has a

discontinuity in the first derivative, and there is a first order phase transition.

This kind of behavior was first found in [35] and afterwards discussed in several different

contexts [36, 7]. In the region of L where V (L) is triple-valued, the point with lowest V is

stable, the intermediate one is metastable and the one with larger V (L) is perturbatively

unstable (always referring to longitudinal perturbations of the string). Stability issues of

this kind of strings were discussed in detail in [37].

The double turnaround region is visible also in the massless mq = 0 case. As it

is evident from figure 8, the Heaviside approximation does not modify qualitatively the

double turnaround behavior of the potential.
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